Categorical Resolutions of Irrational Singularities

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Resolutions and Rational Singularities

Let k be an algebraically closed field of characteristic zero. We show that the centre of a homologically homogeneous, finitely generated kalgebra has rational singularities. In particular if a finitely generated normal commutative k-algebra has a noncommutative crepant resolution, as introduced by the second author, then it has rational singularities.

متن کامل

Quantization of minimal resolutions of Kleinian singularities

In this paper we prove an analogue of a recent result of Gordon and Stafford that relates the representation theory of certain noncommutative deformations of the coordinate ring of the nth symmetric power of C2 with the geometry of the Hilbert scheme of n points in C2 through the formalism of Z-algebras. Our work produces, for every regular noncommutative deformation Oλ of a Kleinian singularit...

متن کامل

Counting resolutions of symplectic quotient singularities

Let Γ be a finite subgroup of Sp(V ). In this article we count the number of symplectic resolutions admitted by the quotient singularity V/Γ. Our approach is to compare the universal Poisson deformation of the symplectic quotient singularity with the deformation given by the Calogero-Moser space. In this way, we give a simple formula for the number of Q-factorial terminalizations admitted by th...

متن کامل

Explicit resolutions of cubic cusp singularities

Resolutions of cusp singularities are crucial to many techniques in computational number theory, and therefore finding explicit resolutions of these singularities has been the focus of a great deal of research. This paper presents an implementation of a sequence of algorithms leading to explicit resolutions of cusp singularities arising from totally real cubic number fields. As an example, the ...

متن کامل

Classification of Normal Quartic Surfaces with Irrational Singularities

If a normal quartic surface admits a singular point that is not a rational double point, then the surface is determined by the triplet (M,D,E) consisting of the minimal desingularization M , the pullback D of a general hyperplane section, and a non-zero effective anti-canonical divisor E of M . Geometric constructions of all the possible triplets (M,D,E) are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2014

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnu072